research and verification of the principle of reconfigurable RF system of FPGA phased acoustic tweezers driven by Large Models
世界5G大会《6G新天线技术》2020白皮书指出:6G无线通信的射频系统向更高自适应性发展。然而,对于传统的固体天线,一旦结构设计好,就很难对其尺寸以及形状进行改变,从而其阻抗、极化以及谐振频率很难实时变化,这使得自适应射频系统对于灵活性和可靠性的平衡兼顾愈发困难。因此,设计新型可重构射频系统的理论并实验验证成为提升射频系统灵活可靠自适应性的关键。
然而,目前的天线重构方案中,二维超表面和液晶天线几何构型控制灵活度低、可调范围窄,依赖特种材料,成本高,功耗高,理论和工艺复杂,可靠性不高[1][2];液体天线适用频段窄,实时性差,大于1GHz时电磁损耗高[3][4],不适合工程实用。
针对高实时性,多材料多目标可控,无电磁干扰,低成本,低功耗等需求,压电驱动的重构方案优势显著。然而,目前压电材料主要用于不同阻抗网络的开关转换,不支持复杂几何构型、可变幅度小,控制材料单一[5]。
针对更灵活精确的重构,超声相控声镊在毫秒级延迟、微米级精度内非接触式地捕捉、移动或旋转物体,且可对多种异质材料如液态金属[6]进行多目标同步高速控制。如相控声阵列多模态(MATD)立体显示器,多微粒速度超过1m/s [7]。
用压电相控声镊改变天线及射频系统的结构,并针对重构结果的可靠性,利用大模型进行系统的自适应链路设计和实时仿真验证,具有适用频段宽(kHz-GHz范围),实时性高,几何构型灵活度高、可变幅度大(微米-米级),多材料多目标可控,无电磁干扰,低成本,低功耗,高可靠,长寿命等优势。
参考文献:
[1] Mashayekhi, M., Kabiri, P., Nooramin, A.S. et al. A reconfigurable graphene patch antenna inverse design at terahertz frequencies. Sci Rep 13, 8369 (2023). https://doi.org/10.1038/s41598-023-35036-4
[2] Wu, GB., Dai, J.Y., Shum, K.M. et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat Commun 14, 5155 (2023). https://doi.org/10.1038/s41467-023-40717-9
[3] M. Zou, Z. Shen, and J. Pan, “Frequency-reconfigurable water antenna of circular polarization”. Applied Physics Letters, 108(1), 014102. 2016
[4] Y. H. Qian and Q. X. Chu, “A Polarization-Reconfigurable ater-Loaded Microstrip Antenna”, IEEE Antennas and Wireless Propagation Letters, vol.16, pp. 2179 – 2182, 2017
[5] K. Aljonubi, R. J. Langley, I. Reaney and A. O. AlAmoudi, "Piezoelectric reconfigurable antenna," 2013 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 2013, pp. 47-50, doi: 10.1109/LAPC.2013.6711849.
[6] Young-Geun Park et al. ,High-resolution, reconfigurable printing of liquid metals with three-dimensional structures.Sci. Adv.5,eaaw2844(2019).DOI:10.1126/sciadv.aaw2844
[7] Hirayama, R., Martinez Plasencia, D., Masuda, N. et al. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 575, 320–323 (2019). https://doi.org/10.1038/s41586-019-1739-5